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Similarly to atomic positions in a crystal being fixed, or at least constrained by

the space group of that crystal, the displacements of atoms in a domain wall are

determined or constrained by the symmetry of the wall given by the sectional

layer group of the corresponding domain pair. The sectional layer group can be

interpreted as comprised of operations that leave invariant a plane transecting

two overlapping structures, the domain states of the two domains adhering to

the domain wall. The procedure of determining the sectional layer groups for all

orientations and positions of a transecting plane is called scanning of the space

group. Scanning of non-magnetic space groups has been described and

tabulated. It is shown here that the scanning of magnetic groups can be

determined from that of non-magnetic groups. The information provided by

scanning of magnetic space groups can be utilized in the symmetry analysis of

domain walls in non-magnetic crystals since, for any dichromatic space group,

which expresses the symmetry of overlapped structures of two non-magnetic

domains, there exists an isomorphic magnetic space group. Consequently, a

sectional layer group of a magnetic space group expresses the symmetry of a

non-magnetic domain wall. Examples of this are given in the symmetry analysis

of ferroelectric domain walls in non-magnetic perovskites.

1. Introduction

Crystals are distinguished from other forms of matter by both

their symmetry and their periodicity which are specified by the

230 crystallographic space groups. Their zero-, one- and two-

dimensional subgroups, called site point groups, penetrating

rod groups and sectional layer groups, describe, respectively,

the symmetry of points, lines and planes in a crystal, and allow

one to classify these objects into equivalence classes with the

same structure and properties but at different orientations

and/or positions within the crystal.

A similar classification of interfaces between two crystals,

e.g. domain walls between two domains, can be carried out.

However, instead of the space group G of either of the crys-

tals, one uses the space group Jij of the overlapping of the two

crystal structures, the latter in terms of domains referred to as

a pair of domain states, or simply as a domain pair. These space

groups Jij can be formally treated as dichromatic (black-and-

white) space groups with the color exchange operation being

interpreted as the exchange of the two crystal structures in the

domain pair (Janovec & Přı́vratská, 2003). The groups Jij are

then also isomorphic with magnetic space groups. Conse-

quently, from the knowledge of the layer subgroups of

magnetic space groups, one can determine the symmetries of

non-magnetic domain walls and subsequently provide a

symmetry classification of the atomic structure of these

domain walls.

Since the layer subgroups of magnetic space groups have

yet to be tabulated, we first describe a simple method (Litvin

& Kopský, 1997) of their derivation from the tabulations of the

layer subgroups of non-magnetic space groups (International

Tables for Crystallography, 2002; Litvin & Kopský, 2004). As

an example, we then derive the domain-wall symmetry of

ferroelectric domain walls in the tetragonal phase of perov-

skite crystals and use the derived symmetry in determining the

topology of atomic displacements at the center of these walls.

2. Scanning of magnetic space groups

If a crystal of space-group symmetry G is transected by a

plane, the subgroup of all operations of the space group G

which leaves the plane invariant is called the sectional layer

group of the plane. The process of determining these sectional

layer groups is called scanning of space groups and has been

considered by Wondratschek (1973), Guigas (1975), Kopský &

Litvin (1989), Kopský (1990) and Davies & Dirl (1993).

Complete scanning tables, i.e. tables of the layer-group

symmetry for planes of all orientation and position in crystals

of any space group have been tabulated (International Tables



for Crystallography, 2002; Litvin & Kopský, 2004). A partial

scanning table for the space group G = P4x=mxmymyz, partial

in that we list only some of the planar orientations, is given in

Table 1.

Starting from the left-hand-side of Table 1, the first column

gives the orientation, in Miller indices, of the planes under

consideration. This is followed, to the right, by the translations

a
^

and b
^

, which are the generating translations of the transla-

tional subgroup of the sectional layer group of planes of this

orientation. The vector d defines the scanning direction and is

also used to define the position of the plane within the crystal.

The origin of the space group is denoted by ‘0’. The position of

the plane is specified by sd, given in the next column, by

specifying the value ‘s’ of the vector sd of the point 0 + sd on

the plane. The sectional layer-group symmetry of the plane is

given in the final column. The origin of this layer group is at

0 + sd or at 0 + sd + t, where t, a vector in the plane, if non-

zero, is given in parentheses after the layer-group symbol. For

example, from Table 1, for the space group G = P4x=mxmymyz,

the sectional layer group of a plane of orientation (100) at

position 0 + 1
2a is py,z4x=mxmymyz. Multiple vectors sd within

brackets represent positions of planes related by operations of

the space-group symmetry.

If a crystal of magnetic space-group symmetry M

(Opechowski, 1986) is transected by a plane, the subgroup of

all operations of the magnetic space group M which leaves the

plane invariant is called the magnetic sectional layer group of

the plane (Litvin, 1999, 2005). The process of determining

these sectional layer groups is called, in analogy with the non-

magnetic case, scanning of magnetic space groups. A method

to determine the scanning tables of magnetic space groups

from the existing scanning tables of space groups has been

developed (Litvin & Kopský, 1997). Let M be a magnetic

space group of the form M = F + g0F, where the prime denotes

time inversion and F the non-magnetic space group of index 2

in M. The scanning table of the magnetic space group M is

obtained from the scanning table of the space group

G = F + gF by putting a prime on every operation of the

second coset gF which is contained in each layer group. For

example, for the magnetic space group P4x=m0xmymyz =

P4xmymyz + �110P4xmymyz, one uses the scanning tables for the

space group P4x=mxmymyz = P4xmymyz + �11P4xmymyz. In the

listings of the layer groups of the latter tables, one leaves

unchanged all operations of the first coset P4xmymyz and

one inserts a prime on all operations belonging to the second

coset �11P4xmymyz. That is, all translations and operations

f1; 4x; 2x; 4�1
x ;my;mz;myz;myzg remain unchanged, the

operations f�11; �44x;mx; �44�1
x ; 2y; 2z; 2yz; 2yzg and these operations

combined with any translation are primed. For example, see

Table 1, the sectional layer group py,z4x=mxmymyz becomes

py;z4x=m0xmymyz.

Scanning tables of magnetic space groups can immediately

be used as scanning tables of dichromatic space groups due to

the isomorphism between these two types of groups. A

magnetic space group M = F + g0F can be converted to a

dichromatic group F + ĝgF simply by replacing the prime (time

inversion) associated with operations of M with a caret (color

exchange). Consequently, scanning tables for dichromatic

groups F + ĝgF can be derived from scanning tables for

magnetic groups F + g0F by replacing the prime on operations

of the sectional layer groups with a caret. For example, the

scanning table for the dichromatic space group P4x=m̂mxmymyz

= P4xmymyz + �̂11�11P4xmymyz is derived from the scanning table

of the magnetic space group P4x=m0xmymyz = P4xmymyz +
�110P4xmymyz. One replaces each prime with a caret, for
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Table 1
Partial scanning table for the space group P4x=mxmymyz, the magnetic
space group P4x=m0xmymyz and the dichromatic space group
P4x=m̂mxmymyz.

Without the primes in the right-hand-column, this is a partial scanning table of
the space group P4x=mxmymyz, with the primes (time inversion), that of the
magnetic space group P4x=m0xmymyz, and, replacing the primes with a caret ^
(color exchange, domain-state exchange), that of a dichromatic space group
P4x=m̂mxmymyz. In a layer-group symbol, an underlined operation signifies that
the operation reverses the normal to the domain wall.

a
^

b
^

d sd Layer group

(100) b c a 0d; 1
2d py;z4x=m0xmymyz

[sd, �sd] py;z4xmymyz

(010) c a b 0d; 1
2d pz;xmzm0xmy

[sd, �sd] pz;xmzm0x20y
(011) �b+c a b+c [0d, 1

2d] pyz;xmyzm0xmyz

[1
4d, 3

4d] pyz;xmyzm0xayz (a
^

/4)
[�sd, (�s+1

2)d] pyz;xmyzm0x20yz

In the following, nq+mp = 1
(0mn) a nb�mc pb+qc 0d; 1

2d p
x;b
^2x=m0x

ð0�nnmÞ a mb+nc �qb+pc [sd, �sd] p
x;b
^m0x

(nm0) c ma�nb qa+pb 0d; 1
2d p

z;b
^20z=mz

ð�nnm0Þ c ma+nb �qa+pb [sd, �sd] p
z;b
^mz

Figure 1
The cubic phase of barium titanate. Ba atoms are denoted by larger filled
circles. O atoms at z = 1

2 and z = 1 are denoted by open or shaded smaller
circles, respectively. Ti atoms at the center of each cubic cell are
represented by smaller filled circles which in this figure are hidden from
view by the O atoms at z = 1.



example in Table 1, the sectional layer group py;z4x=m0xmymyz

becomes py,z4x=m̂mxmymyz.

3. Application in symmetry analysis of domain walls

Fig. 1 shows the structure of the cubic phase of barium

titanate, of symmetry Pm�33m along with the coordinate system

we shall use. The z axis is out of the paper. Ba atoms are

denoted by larger filled circles. O atoms at z = 1
2 and z = 1 are

denoted by open or shaded smaller circles, respectively. Ti

atoms at the center of each cubic cell are represented by

smaller filled circles, which in Fig. 1 are hidden from view by

the O atoms at z = 1. Two single-domain states, denoted by S1

and S2, of the tetragonal phase with a 6¼ b = c, of barium

titanate are shown in Figs. 2(a) and 2(b), respectively (Janovec

et al., 2004). The magnitude and direction of exaggerated

atomic displacements relative to their original positions in the

cubic phase are represented by arrows.

In Fig. 3, we show the domain pair consisting of the

superposition of these two single-domain states S1 and S2. The

space-group symmetry of each of the two single-domain states

S1 and S2 is P4xmymyz. The symmetry group Jij of a domain

pair can be considered as a dichromatic space group with the

two colored single-domain states. The dichromatic space-

group symmetry of the domain pair in Fig. 3 is P4xmymyz +

�̂11�11P4xmymyz = P4x=m̂mxmymyz, where the caret ^ denotes that the

corresponding symmetry operation exchanges the two single-

domain states (Janovec & Přı́vratská, 2003). Half of the

operations of this group, the operations of the first coset

P4xmymyz, transform atoms of one single-domain state (one

color) into atoms of the same single-domain state (the same

color), while the operations of the second coset �̂11�11P4xmymyz,

those with a caret, transform atoms of one single-domain state

(one color) into atoms of the other single-domain state (the

opposite color).

A domain twin is obtained by passing a plane through the

domain pair and deleting from one side of the plane the atoms

of one of the single-domain states, and the atoms of the second

single-domain state from the other side of the plane. Atoms in

and near the plane represent the structure of the central part

of the domain wall. The displacement of atoms at the center of

the domain wall is fixed or at least constrained by the layer-

group symmetry of the domain wall. The layer-group

symmetry of the domain wall, in turn, depends on both the

domain wall’s orientation and position within the domain pair.

Consequently, since the domain twin’s symmetry is a dichro-

matic space group, to determine the domain-wall symmetry we
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Figure 2
Two single-domain states S1 and S2 of the tetragonal phase of barium
titanate. Ba atoms are denoted by larger filled circles, O atoms by open
or shaded smaller circles and Ti atoms by smaller filled circles The
magnitude and direction of exaggerated atomic displacements relative to
their positions in the cubic phase are denoted by arrows.

Figure 3
The domain pair consisting of the superposition of the two single-domain
states S1 and S2 shown in Figs. 2(a) and 2(b). The space-group symmetry
of both the individual single-domain states is P4xmymyz. The dichromatic
space-group symmetry of the domain pair is P4x=m̂mxmymyz, where the
caret ^ denotes that the corresponding symmetry operation exchanges
the two single-domain states.



use the concept of scanning of dichromatic space groups, i.e.

using the scanning tables for dichromatic space groups derived

from the scanning tables of magnetic space groups.

We give here two examples of using scanning tables for

dichromatic space groups in the symmetry analysis of domain

walls. For the two single-domain states in Figs. 2(a) and 2(b),

we transect the corresponding domain pair, Fig. 3, with a plane

of orientation (010) at the position 0b (i.e. 0d with d = b). From

Table 1, the sectional layer group of this domain wall is

pz;xmzm̂mxmy, found by replacing the prime in pz;xmzm0xmy with

a caret. The underlined operations reverse the normal of the

wall (Janovec & Přı́vratská, 2003). The symmetry diagram of

this layer group is shown in Fig. 4 with an overlay of the

undisplaced atoms in the center of this domain wall. The site

point group of both the Ba and O atoms, with respect to this

layer group, is m̂mxmzmy. Consequently, the positions are fixed
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Figure 4
The symmetry diagram of pz;xmzm̂mxmy, the symmetry of the domain wall
of orientation (010) at d = 0b in Fig. 3 as seen looking along the y axis.
Operations with a caret ^ representing operations which exchange the
two domain states are given in red. Overlaid on this diagram are the
positions of the undisplaced Ba and O atoms at the center of the domain
wall. The site point group of these atoms is m̂mxmzmy.

Figure 5
The domain twin consisting of the domain states S1 and S2 separated by a
domain wall of orientation (010) at d = 0b. Atoms at the center of the
domain wall are fixed by the domain-wall symmetry. The domain wall and
fixed atoms are indicated in green.

Figure 6
The symmetry pz;x�yy2̂2z=mz of the domain wall of orientation (110) at the
position d = 1

2a in Fig. 3. Overlaid on this diagram are the positions of the
undisplaced O atoms at the center of the domain wall. The site point
group of these O atoms is 2̂2z=mz.

Figure 7
The domain twin consisting of the domain states S1 and S2 separated by a
domain wall of orientation (110) at the position d = 1

2a. Atoms at the
center of the domain wall are fixed by the domain-wall symmetry. The
domain wall and fixed atoms are indicated in green.



and the atoms in the center of the domain wall are not

displaced. The resulting domain twin is shown in Fig. 5, with

the domain wall and fixed atoms indicated in green.

As a second example, we consider a plane of orientation

(110) at the position 1
2a. In Table 1, this case is found on the

line with orientation (nm0) with m = n = 1. d = qa + pb and,

since nq + mp = 1, we have taken q = 1 and p = 0. The sectional

layer group of the domain wall of this orientation and position

is, from Table 1, pz;x�yy2̂2z=mz. Fig. 6 is the symmetry diagram of

this sectional layer group with an overlay of the atoms in the

center of the domain wall in their undistorted positions. The

site point group of each of the O atoms is 2̂2z=mz and conse-

quently no displacements of these atoms are allowed. The

resulting domain twin is shown in Fig. 7.

In both examples, we have shown that whether or not atoms

at the center of non-magnetic domain walls are or are not

displaced can be determined using scanning tables. It is not

surprising that in these examples the atoms at the center of the

domain walls are not displaced. In fact, the atoms at the center

in all possible domain walls are not displaced. This is a

consequence of (i) the overlap symmetry of the two domain

states contains the inversion operation and (ii) that the site

point group of every atom in the undistorted phase also

contains the inversion operation. A domain wall containing

atoms will then have a point-group symmetry containing the

inversion operation. The site point group of each atom at

the center of the domain wall will then also contain the

inversion operation and consequently these atoms will not be

displaced.
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